Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Control Instrumentation System Conference, CISCON 2021 ; 957:37-57, 2023.
Article in English | Scopus | ID: covidwho-2265629

ABSTRACT

Sensor technology has become an integral part of the diagnosis, monitoring, therapeutic and surgical areas of medical science. Various sensors like glucose biosensors for diagnosis of diabetes mellitus or fluorescent sensors for gene expression and protein localization have become a common part of the biomedical field. Due to their widespread applications, various advances and improvements have taken place in medical sensor technology which has led to an increase in the ease and accuracy of diagnosis as well as treatment of diseases. This review article aims at studying various novel and innovative developments in biosensors, fibre optic sensors, sensors used for microelectromechanical systems, flexible sensors and wearable sensors. This article also explores new sensing methodologies and techniques in different medical domains like dentistry, robotic surgery and diagnosis of severe life-threatening diseases like cancer and diabetes. Various sensors and systems used for rapid detection of the SARS-CoV-2 virus which is responsible for the COVID-19 pandemic have also been discussed in this article. Comparison of novel sensor-based systems for detection of various medical parameters with traditional techniques is included. Further research is necessary to develop low cost, highly accurate and easy-to-use medical devices with the help of these innovative sensor technologies. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

2.
21st Mediterranean Microwave Symposium, MMS 2021 ; 2022-May, 2022.
Article in English | Scopus | ID: covidwho-1985490

ABSTRACT

In this work, we present a UHF-RFID-based noninvasive sensor to measure the concentration of ethanol in water using the volume fraction of liquids in mixture solutions. The sensing system operates at the UHF band (860-928 MHz). The concentration of ethanol in water affects the dielectric properties of the solution and therefore the antenna sensitivity of the RFID tag. This sensor operates by measuring the change in permittivity of a solution because of the change in concentration of ethanol in water. We propose a flexible RFID-Tag sensor a low-cost alternative to identify the possible sensitivity of tag changes and is able to detect a variation of 25% in ethanol in 9 ml of deionized water (DI-Water). The solution is useful in avoiding counterfeit ethanol solutions that may be toxic. The experimental setup is inexpensive, portable, quick, and contactless. We present results for ethanol solutions ranging from 25% to 100% in a small tube container. © 2022 IEEE.

3.
Materials (Basel) ; 14(23)2021 Nov 23.
Article in English | MEDLINE | ID: covidwho-1542648

ABSTRACT

Flexible sensors have attracted extensive attention because of their promising applications in the fields of health monitoring, intelligent robots, and electronic skin, etc. During the COVID-19 epidemic, noncontact control of public equipment such as elevators, game consoles, and doors has become particularly important, as it can effectively reduce the risk of cross-infection. In this work, a noncontact flexible temperature sensor is prepared via a simple dip-drying progress, in which poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS) and printer paper served as the sensing material and the flexible substrate, respectively. We combined the highly sensitive temperature-responsive property of PEDOT:PSS with the good hygroscopicity of printer paper. The prepared sensor shows high sensitivity and good stability in noncontact sensing mode within the temperature range of 20-50 °C. To prove the practicability of the noncontact temperature sensor, a 3 × 2 sensing array is prepared as a noncontact human-machine interface to realize the interaction between player and "Pound-A-Mole game" and a Bluetooth car. These two demos show the sensor's ability to perceive nearby temperature changes, verifying its application potential as a noncontact human-machine interaction interface.

4.
IEEE Sens J ; 21(13): 13985-13995, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-998648

ABSTRACT

Accurate measurement and monitoring of respiration is vital in patients affected by severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2). Patients with severe chronic diseases and pneumonia need continuous respiration monitoring and oxygenation support. Existing respiratory sensing techniques require direct contact with the human body along with expensive and heavy Holter monitors for continuous real-time monitoring. In this work, we propose a low-cost, non-invasive and reliable paper-based wearable screen printed sensor for human respiration monitoring as an effective alternative of existing sensing systems. The proposed sensor was fabricated using traditional screen printing of multi-walled carbon nanotubes (MWCNTs) and polydimethylsiloxane (PDMS) composite based interdigitated electrodes on paper substrate. The paper substrate was used as humidity sensing material of the sensor. The hygroscopic nature of paper during inhalation and exhalation causes a change in dielectric constant, which in turn changes the capacitance of the sensor. The composite interdigitated electrode configuration exhibited better response times with a rise time of 1.178s being recorded during exhalation and fall time of 0.88s during inhalation periods. The respiration rate of sensor was successfully examined under various breathing conditions such as normal breathing, deep breathing, workout, oral breathing, nasal breathing, fast breathing and slow breathing by employing it in a wearable mask, a mandatory wearable product during the current COVID-19 pandemic situation.Thus, the above proposed sensor may hold tremendous potential in wearable/flexible healthcare technology with good sensitivity, stability, biodegradability and flexibility at this time of need.

SELECTION OF CITATIONS
SEARCH DETAIL